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Collision integrals related to binary (dilute gas) diffusion are calculated classically for six species
colliding with N2. The most detailed calculations make no assumptions regarding the complexity
of the potential energy surface, and the resulting classical collision integrals are in excellent agree-
ment with previous semiclassical results for H + N2 and H2 + N2 and with recent experimental
results for CnH2n+2 + N2, n = 2–4. The detailed classical results are used to test the accuracy of
three simplifying assumptions typically made when calculating collision integrals: (1) approximat-
ing the intermolecular potential as isotropic, (2) neglecting the internal structure of the colliders
(i.e., neglecting inelasticity), and (3) employing unphysical R−12 repulsive interactions. The effect
of anisotropy is found to be negligible for H + N2 and H2 + N2 (in agreement with previous quan-
tum mechanical and semiclassical results for systems involving atomic and diatomic species) but
is more significant for larger species at low temperatures. For example, the neglect of anisotropy
decreases the diffusion coefficient for butane + N2 by 15% at 300 K. The neglect of inelasticity,
in contrast, introduces only very small errors. Approximating the repulsive wall as an unphysical
R−12 interaction is a significant source of error at all temperatures for the weakly interacting systems
H + N2 and H2 + N2, with errors as large as 40%. For the normal alkanes in N2, which feature
stronger interactions, the 12/6 Lennard–Jones approximation is found to be accurate, particularly
at temperatures above ∼700 K where it predicts the full-dimensional result to within 5% (although
with somewhat different temperature dependence). Overall, the typical practical approach of assum-
ing isotropic 12/6 Lennard–Jones interactions is confirmed to be suitable for combustion applications
except for weakly interacting systems, such as H + N2. For these systems, anisotropy and inelasticity
can safely be neglected but a more detailed description of the repulsive wall is required for quantita-
tive predictions. A straightforward approach for calculating effective isotropic potentials with realis-
tic repulsive walls is described. An analytic expression for the calculated diffusion coefficient for H
+ N2 is presented and is estimated to have a 2-sigma error bar of only 0.7%. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4896368]

I. INTRODUCTION

Collision integrals, �(l,s), are key components of elemen-
tary chemical kinetics calculations and combustion simula-
tions. Physically, they provide the connection between the
microscopic intermolecular forces governing individual col-
lisions and the bulk transport properties diffusion, thermal
conductivity, and viscosity.1–4 As such, �(l,s) are highly av-
eraged functions of the intermolecular potential, including
averaging over impact parameter, collision energy, relative
orientation, etc. Computationally, �(l,s) are most often eval-
uated in the dilute gas limit (where only binary collisions
are important) via Chapman–Enskog theory5 and assuming an
isotropic intermolecular interaction. Implicit in the use of an
isotropic intermolecular potential are the additional assump-
tions that the colliders lack internal structure and that the col-
lisions are elastic (or, equivalently, that the internal degrees of
freedom of the colliders are not coupled to the intermolecu-
lar degrees of freedom). The isotropic intermolecular poten-
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tial is often further approximated as a 12/6 Lennard–Jones
interaction.

Even with these simplifying assumptions, collision inte-
grals require some care to evaluate with high accuracy, and
tables of calculated 12/6 Lennard–Jones collision integrals
have been compiled.6 Use of these tables requires knowledge
of the two Lennard–Jones parameters7 σ and ε, which define
the inner turning point at zero asymptotic relative energy and
the well depth of the intermolecular potential, respectively.
Pure gas Lennard–Jones parameters have been collected8 for
several species (typically extracted from viscosity measure-
ments or estimated), and empirical combining rules may be
used to generate binary collision parameters from the pure
gas ones.7 Effective binary isotropic Lennard–Jones parame-
ters may also be calculated directly from the full-dimensional
anisotropic intermolecular potential.9

Formal solutions of the collision integrals have long
been available for classical,10 semiclassical,11 and quan-
tum mechanical12 collisions. Semiclassical and quantal dif-
fusion coefficients (which are inversely related to the col-
lision integral �(1,1)) have been calculated using accurate

0021-9606/2014/141(12)/124313/12/$30.00 © 2014 AIP Publishing LLC141, 124313-1
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full-dimensional potentials for systems with 2–4 atoms (e.g.,
Refs. 13–19). One notable result from these studies is that
the neglect of anisotropy in the intermolecular potential has
only a small effect on the computed diffusion coefficients.
Monchick et al.20 provided formal arguments that the effects
of anisotropy and inelasticity on transport properties such as
diffusion should be expected to be small in general, but the
error associated with the neglect of these details has not been
quantified for systems with more than a few atoms.

Tabulations of (typically classical) collision integrals for
other isotropic functional forms exist, including Bucking-
ham or exp/6,21 Morse,22 and m/6 Lennard–Jones6 potentials.
These functional forms have more realistic treatments of the
repulsive wall than the 12/6 Lennard–Jones functional form
but are rarely used. Their infrequent use is most likely due to
a lack of knowledge of the additional parameters required to
specify these potentials.

Here we calculate classical (1,1) collision integrals and
binary diffusion coefficients without making any assumptions
about the nature of the intermolecular potential and without
neglecting inelasticity. Corrections for non-dilute gases are
not considered. Molecular nitrogen is chosen as the bath gas
due to its importance as a diluent in combustion experiments
and as a proxy for air in combustion systems. The diffusion
of six species (H, H2, CH4, C2H6, C3H8, and C4H10) in N2 is
considered, and trends with respect to system size are identi-
fied. The consideration of the normal alkanes in particular is
motivated by recent experimental diffusion coefficient mea-
surements of McGivern and Manion.23

The error associated with the present use of classical me-
chanics is likely small, especially at combustion temperatures.
For the case of an isotropic 12/6 Lennard–Jones potential,
for example, classical collision integrals were shown12 to be
accurate for T > ε/k, which is typically satisfied near room
temperature and above. The present classical methods have
the significant advantage that they are computationally effi-
cient enough to be applied to large polyatomic systems us-
ing high-level full-dimensional potential energy surfaces. The
good accuracy of classical mechanics for calculating diffu-
sion coefficients and of the potential energy surfaces used here
is demonstrated via comparisons with previous semiclassical
results14, 15 for H + N2 and H2 + N2 as well as comparisons
with experimental results23 for the normal alkanes in N2.

The principal goal of the present study is to use the
validated full-dimensional classical results to quantify the
errors associated with the simplifying assumptions identi-
fied above, with an emphasis on identifying practical first-
principles methods for predicting transport in combustion sys-
tems. The term “first-principles” is meant to indicate methods
that rely only on calculated or well-known (atomic masses,
etc.) parameters and that do not make use of empirically ad-
justed or experimental parameters (e.g., tabulated Lennard–
Jones parameters). The full-dimensional results are compared
with results obtained for calculated isotropic potentials us-
ing parameters obtained directly from the full-dimensional
potentials with the previously described spherical-averaging
method.9

We find that detailed treatments of anisotropy, inelastic-
ity, and the repulsive wall are typically not needed for accu-

rate predictions of diffusion coefficients, particularly at com-
bustion temperatures (700–2500 K). Despite its unphysical
repulsive wall, the isotropic 12/6 Lennard–Jones potential,
along with calculated values of σ and ε, is shown to predict
diffusion coefficients for many systems relevant to combus-
tion within ∼5%. For polyatomic systems at low temperatures
(∼300 K), however, the neglect of anisotropy can have non-
negligible effects as large as 15%.

A notable exception is the diffusion of H atoms, which
is often the most important transport property in combus-
tion simulations. The present classical results show that the
isotropic 12/6 Lennard–Jones potential cannot be used to ac-
curately treat weakly interacting systems such as H + N2 and
H2 + N2 at any temperature and that the principal source
of error (as large as 40%) arises from the treatment of the
repulsive wall and not from inelasticity or anisotropy. Our
previously proposed scheme9 for calculating σ and ε from
full-dimensional intermolecular potentials is generalized here
to provide a more detailed description of the repulsive wall
within the isotropic approximation. This new method, along
with tabulated classical collision integrals for the isotropic
exp/6 (Buckingham) potential, provides a convenient first-
principles scheme for obtaining accurate collision integrals
for weakly interacting systems such as H + N2.

II. THEORY

For A + B collisions where A and B are molecules with
internal structure, the inelastic reduced (1,1) collision integral
at some temperature T may be written2, 10

�(1,1)∗(T ) = 1

πσ 2

∑
i,j,i ′,j ′

e
−ε

A,i

QA

e
−ε

B,j

QB

∫
dγ γ 3e−γ 2

×
∫

dφ sin χdχ (γ 2 − γ γ ′ cos χ )I i ′j ′
ij , (1)

where σ is a reference collision diameter, the indices i and
j label the initial (pre-collision) internal states (with degen-
erate states labeled individually) of the reactants A and B
with energies EA,i and EB,j, respectively, εX,i = EX,i/kT, k
is Boltzmann’s constant, QA and QB are the internal parti-
tion functions for the reactants, γ is related to E, the relative
A + B collision energy, via γ 2 = ε = E/kT, primes denote
post-collision properties, φ and χ are the azimuth and po-
lar scattering angles, respectively, and I

i ′j ′
ij (γ, φ, χ ) is the

state-to-state differential scattering cross section. Equation
(1) makes no assumptions about the nature of the A + B in-
termolecular potential.

The dilute gas binary diffusion coefficient D is related to
the (1,1) reduced collision integral via1–4

D(T ) ≈ [DAB(T )]1 = 3

16

(2πk3T 3/μ)1/2

pπσ 2�(1,1)∗ , (2)

where p is the pressure and μ is the reduced mass of the col-
liders, and higher-order corrections to D have been neglected.
Equations (1) and (2) assume the dilute gas limit (where only
binary collisions are important) and that the colliding partners
are governed by thermal distributions.
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Equation (1) may be written more transparently for eval-
uation via Monte Carlo integration. First, we define the ther-
mal populations of the internal states of each of the colliding
species PX,i(T ) = e

−εX,i /QX and the thermal distribution of
A + B collision energies Prel(ε) = ε exp(−ε). Then, via a
change of integration variables from dγ to dε and from the
solid angle variables I

i ′j ′
ij dφ sin χdχ to 2π b db, where b is

the impact parameter, Eq. (1) becomes

�(1,1)∗(T ) = 1

σ 2

∑
i,j,i ′,j ′

PA,iPB,j

∫
dε Prel

×
∫

db b (ε −
√

εε′ cos χ ). (3)

To evaluate Eq. (3), ensembles of N trajectories were pre-
pared with initial conditions for A + B collisions sampled
from classical thermal distributions for PA,i, PB,i, and Prel,
and with the impact parameter sampled uniformly from 0 to
bmax. Full-dimensional classical trajectories were integrated
for each member of the ensemble, and the scattering angle χ

and final relative energy ε′ for each trajectory were calculated.
The Monte Carlo expression for �(1, 1)∗ is then

�(1,1)∗(T ) = bmax

σ 2

∑
α

bα(εα −
√

εαε′
α cos χα)/N, (4)

where the subscript α labels trajectories in the ensem-
ble. Along with the binary collision and thermal assump-
tions inherent in Eq. (1), the only additional assumption in
Eq. (4) is that of classical mechanics. Expressions suitable for
trajectory-based Monte Carlo evaluations of other collision
integrals �(l,s) may be similarly obtained.

Assuming elastic collisions (ε′
α = εα), Eq. (4) becomes

�(1,1)∗(T ) = bmax

σ 2

∑
α

bα εα(1 − cos χα)/N. (5)

The effect of inelasticity on the computed collision integrals
was studied by comparing the results of Eqs. (4) and (5),
where Eq. (5) was evaluated for the same ensembles of full-
dimensional trajectories as Eq. (4). These ensembles do al-
low for inelastic collisions, and so the present application of
Eq. (5) only approximates the effect of neglecting inelasticity
when evaluating the collision integrals.

The classical trajectory calculations and initial condi-
tions used here are closely related to those for collisional en-
ergy transfer, which have been described in detail in Ref. 24.
Briefly, ensemble sizes of N = 1 280 000 for H + N2 and
H2 + N2 and N = 128 000 for CnH2n+2 + N2 were used to
evaluate Eqs. (4) and (5). For these ensemble sizes, the two-
sigma bootstrap25, 26 statistical uncertainties were 0.4% for H
+ N2 and H2 + N2 and 1% for CnH2n+2 + N2. Initial and
final center-of-mass separations (12–17 Å) were chosen such
that εα and ε′

α were converged to at least seven digits. Equa-
tions (4) and (5) converge with respect to the choice of bmax,
so long as bmax is large enough to include non-negligible val-
ues of the integrand (we used bmax = 10–15 Å). Trajectories
were integrated with a variable step size integrator and an in-
tegrator tolerance such that the total energy and total angular
momentum were conserved to six digits.

No reference to the intermolecular potential is required
in the derivation of Eq. (4), and it may be applied gener-
ally to full-dimensional intermolecular potentials, i.e., Eq. (4)
is the full-dimensional classical collision integral, including
anisotropy and inelasticity. Here we have used our previously
parameterized27 full-dimensional analytic potentials for CxHy
+ N2 and two newly fitted analytic potentials for H + N2 and
H2 + N2. The new H + N2 and H2 + N2 potentials are de-
scribed in detail below.

The “universal” CxHy + N2 potential employs the sepa-
rable pairwise approach for the intermolecular potential with
atom-atom interactions obtained from a previous parameteri-
zation of the CH4 + N2 system.28 The use of CH4 + M pair-
wise intermolecular parameters as universal parameters for
larger hydrocarbons was tested27 in energy transfer calcula-
tions for C2Hy + He and was shown to be accurate within
the statistical uncertainty of those calculations (∼10%). In an-
other study, the universal CxHy + M potentials were used to
calculate 12/6 Lennard–Jones collision rates for a variety of
baths within ∼10% of those based on tabulated values for sev-
eral systems as large as octane.9, 27

The new H + N2 potential energy surface was ob-
tained by fitting a grid of 1425 counterpoise corrected
QCISD(T)/CBS interaction energies, where the complete ba-
sis set (CBS) limit was calculated from Dunning’s aug-cc-
pVTZ and aug-cc-pVQZ basis sets. The separable pairwise28

functional form was used, with H–N interactions modeled
using the cutoff exp/6 (Buckingham) formula. A previously
obtained28 potential energy curve for isolated N2 was used
for the N–N interaction.

The H + N2 intermolecular potential has only 4 ad-
justable parameters, the mean unsigned fitting error to the
1425 QCISD(T)/CBS interaction energies was 14 cm−1 for
energies below 3000 cm−1. The mean unsigned fitting error
cannot readily be interpreted as a measure of the quality of
the fit, however, as the functional form fits the long-range data
with small (<1 cm−1) errors by construction, while errors can
be as large as ∼1000 cm−1 for strongly repulsive interactions.
The mean unsigned fitting error therefore depends arbitrarily
on the relative amounts of long-range and short-range data in-
cluded in the fit. Furthermore, the mean unsigned error is not
a good indicator of the accuracy of using this fitted potential
in the present dynamical application. As discussed previously
in the context of energy transfer calculations,28 it is more use-
ful to characterize the fitted potential in terms of its ability
to reproduce small interaction energies (i.e., those associated
with the van der Waals well) as well as its ability to repro-
duce the range of the repulsive wall at shorter center-of-mass
separations. The accuracy of the newly fitted H + N2 poten-
tial for the present application is further discussed from this
perspective in Sec. III.

For H2 + N2, the newly fitted potential was obtained us-
ing permutationally invariant polynomials29–31 in Morse vari-
ables, yij = exp(–a rij), where rij is the distance between atoms
i and j. We again made the separable approximation and fit
only the intermolecular potential using permutationally in-
variant polynomials. This approach has the advantage that dif-
ferent levels of theory could be used to describe the isolated
potentials for H2 and N2 and the intermolecular potential. The
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one-dimensional diatomic potential curves were taken from
previously described28 analytic fits to high-level ab initio en-
ergies for those systems. The intermolecular potential was fit
to 25 000 counterpoise corrected MP2/CBS interaction ener-
gies, where the CBS limit was calculated from the aug-cc-
pVDZ and aug-cc-pVTZ basis sets. This level of theory was
found to agree well with the more computationally demand-
ing counterpoise corrected QCISD(T)/CBS method and with
two-point CBS extrapolations based on the aug-cc-pVTZ and
aug-cc-pVQZ basis sets.

As discussed in detail in the supplementary material for
Ref. 30, the permutationally invariant polynomial representa-
tion of the intermolecular potential is not guaranteed to go to
zero as H2 and N2 separate due to “unconnected” terms such
as yij ykl, where i and j label atoms in one molecule and k and
l label atoms in the other. To enforce the desired asymptotic
behavior, the interaction energy was fitted using 4th-order per-
mutationally invariant polynomials from which terms that did
not include only H–N distances were removed.30 With these
terms removed, 22 linear parameters remained in the func-
tional form for the intermolecular potential. The root-mean-
square error of the fit was 18 cm−1 for all of the data in-
cluded in the fit and only 5 cm−1 for data with energies below
2000 cm−1. The quality of the fitted H2 + N2 potential for the
present dynamical application is further discussed in Sec. III.

The results of the full-dimensional trajectory calculations
(Eq. (4)) are compared with results obtained using isotropic
potentials, including the m/6 Lennard–Jones potential6

V (R) = ε

(6/m)6/(m−6) − (6/m)m/(m−6)

[(σ

R

)m

−
(σ

R

)6
]

,

(6)
and the exp/6 potential21

V (R) = ε

1 − 6/α

[
6

α
eα(1−R/R′) −

(
R′

R

)6
]

, (7)

where R′ is the value of R for which V is a minimum; σ is re-
lated to R′ by setting V = 0 and R = σ in Eq. (7). The classical
reduced collision integrals for these potentials were interpo-
lated from those reported in previously compiled tables.6, 21

The use of isotropic potentials beyond the 12/6 Lennard–
Jones functional form requires additional information about
the repulsive wall to determine the value of the third pa-
rameter (m in Eq. (6) or α in Eq. (7)). Here, we generalize
our previously described9 “orientation-averaging with one-
dimensional optimizations” scheme to obtain more informa-
tion about the repulsive wall. In this method, the two collid-
ing species are oriented randomly relative to one another, and
one-dimensional optimizations are performed with respect to
their center-of-mass distance. Previously,9 two optimizations
were carried out: the minimum interaction energy –V′ was lo-
cated, and the center of mass distance for the inner turning
point R(V = 0) was located, where the zero of energy in V is
defined as the asymptotic A + B energy. This process was re-
peated for many uniformly sampled A + B orientations, and
the calculated Lennard–Jones parameters were obtained as σ

≡ 〈R(V = 0)〉 and ε ≡ 〈V′〉, where the brackets denote aver-
ages over the sampled orientations. This method was shown to
predict Lennard–Jones collision rates (typically) within 10%

of those based on tabulated Lennard–Jones parameters for a
wide variety of systems.9 Here, we generalize this procedure
to also obtain R̄(V ) ≡ 〈R(V )〉 for V > 0, where R̄(0) = σ as
defined above. This approach is equivalent to determining the
hypervolume of the full-dimensional intermolecular potential
defined by the equipotential surface V and then computing
the diameter R̄(V ) for a hypersphere (or isotropic interaction)
of the same volume. The calculated values of R̄(V ) for V

> 0 are used to determine m and α, as discussed below.

III. RESULTS AND DISCUSSION

A. H + N2

Lennard–Jones parameters for H + N2 were calculated
using the spherical-averaging method of Ref. 9. The fitted po-
tential predicts ε = 26.1 cm−1 and σ = 3.36 Å, in excellent
agreement with direct QCISD(T)/CBS results (ε = 27.0 cm−1

and σ = 3.35 Å). One tabulation of Lennard-Jones parameters
used extensively in combustion modeling8 lists these param-
eters as ε = 82.7 cm−1 and σ = 2.84 Å, where the usual geo-
metric and arithmetic mean combining rules7 have been used
to obtain the H + N2 parameters from the pure gas ones for H
and N2. These tabulated parameters do not bear any obvious
relationship with the calculated intermolecular potential, with
differences well outside the expected accuracy of the counter-
poise corrected QCISD(T)/CBS method.

The repulsive wall for H + N2 was characterized us-
ing the fitted surface and the spherical-averaging method dis-
cussed above to calculate R̄(V ) for V > 0. These results are
shown in Fig. 1(a), along with direct QCISD(T)/CBS calcula-
tions of R̄(V ) at several energies. Again, the fitted surface ac-
curately reproduces the QCISD(T)/CBS results. Also shown
in Fig. 1(a) are the 9/6 and 12/6 Lennard-Jones potentials for
the calculated values of ε = 26.1 cm−1 and σ = 3.36 Å. The
calculated repulsive wall is softer and shorter-ranged than ei-
ther of the Lennard–Jones potentials. The 9/6 repulsive wall,
while more accurate than the 12/6 repulsive wall, is still sig-
nificantly longer-ranged and harder than the calculated poten-
tial. The repulsive Lennard–Jones exponent could be further
optimized to m = 7, but the resulting fit remains qualitatively
harder than the calculated potential.

As expected, the intermolecular potential is more accu-
rately represented using an exp/6 (Buckingham) isotropic po-
tential. The exp/6 potential shown in Fig. 1(a) was obtained
for H + N2 by fixing the well depth and V = 0 turning
point (i.e., ε and σ ) at their calculated values for the fitted
potential and optimizing the single remaining parameter (α
= 11.6) to fit the calculated repulsive wall. Unlike the
Lennard–Jones potentials, the fitted exp/6 potential accurately
reproduces both the range and softness of the repulsive wall
up to at least 2500 cm−1.

The 12/6 Lennard–Jones potential based on the
tabulated8 parameters for H + N2 (ε = 82.7 cm−1 and
σ = 2.87 Å) is also shown in Fig. 1(a). Despite the significant
differences in the well depth and the V = 0 turning point, we
note that the range of the repulsive interaction agrees with the
calculated intermolecular potential at about 1000 cm−1.

Reduced (1,1) collision integrals were calculated by in-
terpolating from tabulations of collision integrals for the
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FIG. 1. (a) Isotropic intermolecular potential for H + N2. The circles are
the result of spherical averaging over the full-dimensional analytic poten-
tial, and the square indicates the spherically averaged well depth and dis-
tance. Selected direct results for the QCISD(T)/CBS surface are shown as
x’s. 9/6 and 12/6 Lennard–Jones potentials based on the calculated values of
σ and ε are shown, along with a calculated exp/6 potential. Also shown is the
12/6 Lennard–Jones potential obtained using tabulated parameters. The inset
highlights the van der Waals well. (b) Reduced (1,1) collision integrals for
the isotropic potential curves shown in Fig. 1(a) and for the full-dimensional
classical results of Eq. (4) (circles with 2-sigma statistical error bars). Also
shown are the semiclassical scattering results of Stallcop et al.14 All of the
curves shown in (b) were reduced to the collision radius σ̄ = 3.36 Å to enable
a direct comparison of the methods, as indicated by the over-line on �(1,1)∗ .

isotropic Lennard–Jones and exp/6 potentials shown in
Fig. 1(a). These are compared in Fig. 1(b) with the results
of the full-dimensional trajectories (Eq. (4)). Also shown are
the full-dimensional semiclassical scattering results of Stall-
cop et al.,14 who used a high-quality potential energy surface
based on counterpoise corrected multireference configuration
interaction energies.

Although we are principally concerned here with quan-
tifying the accuracy of the calculated values of D, it is more
convenient to present and discuss �(1,1)∗ . Differences in the
methods’ predictions are more readily seen when plotting
�(1,1)∗ , which varies by only a factor of ∼2 from 300 to 3000
K, while D varies by two orders of magnitude over the same
temperature range. We note that care must be taken when
comparing reduced collision integrals obtained from different
sources (theory, experiment, tabulation, etc.), as they will gen-
erally have been reduced to different reference hard-sphere
values, i.e., to different values of σ . Reduced collision inte-
grals may be trivially rescaled (or reduced) to any other ref-
erence σ̄ via �̄(1,1)∗ = σ 2

σ̄ 2 �
(1,1)∗. The product σ 2�(1, 1)∗ is in-

variant to the choice of σ , and it is this product that appears
when calculating physical properties, such as D in Eq. (2). To
enable direct comparisons of the present collision integrals
obtained from different sources, all of the results shown in
Fig. 1(b) have been reduced to the calculated value of σ̄ =
3.36 Å. By using a consistent value of σ̄ for all the meth-
ods, the relative differences in the curves in Fig. 1(b) are the
same as those that would be observed for D, although the or-
der is reversed due to the inverse relationship between D and
σ 2�(1, 1)∗. Again, a method’s relative error in �̄(1,1)∗ may be
interpreted as its relative error in D.

As shown in Fig. 1(b), the full-dimensional classical tra-
jectory results are in excellent agreement with the semiclassi-
cal scattering results of Stallcop et al.,14 differing by less than
2% below 1500 K and by no more than 6% at 3000 K. These
small differences are most likely due to small differences in
the potential energy surfaces used in the two calculations. It
is less likely that these differences are due to the different dy-
namical treatments employed. The use of classical mechanics
may be supported for this system by noting that quantum ef-
fects are expected to be small when T ∗ = kT/ε > 1,12 and for
this system T ∗ = 8–77 for T = 300–3000 K.

The reduced collision integral for the calculated 12/6
Lennard–Jones potential does not agree well with the full-
dimensional classical result and is too high by 10%–40%
from 300 to 3000 K, as shown in Fig. 1(b). The use of the
9/6 Lennard–Jones potential improves the agreement some-
what, but differences of up to 20% remain at high tempera-
ture. These results correlate qualitatively with the accuracy of
the two methods’ description of the repulsive wall shown in
Fig. 1(a).

The reduced collision integral for the calculated isotropic
exp/6 potential—which accurately reproduces the calculated
spherically averaged repulsive wall as noted above and shown
in Fig. 1(a)—agrees quantitatively with the full-dimensional
result, differing within the 0.4% 2-sigma statistical uncertain-
ties for all but the high-temperature results where the dif-
ferences are less than 3%. Stallcop et al.14 found that semi-
classical collision integrals for H + N2 calculated using an
isotropically averaged potential agreed well with their full-
dimensional semiclassical results, and the present classical
calculations also show this result.

The neglect of the internal structure of N2 for this system
may be further motivated by noting that the effect of inelastic-
ity in H + N2 collisions is negligible. The predicted reduced
collision integral obtained using Eq. (4) differs from the one
obtained using Eq. (5) by <0.5% for the entire temperature
range considered here.

Next, we compare the reduced collision integral for the
tabulated 12/6 Lennard–Jones potential with the calculated
full-dimensional result (Eq. (4)). While the empirically ad-
justed 12/6 Lennard–Jones parameters result in a qualitatively
inaccurate intermolecular potential (cf. Fig. 1(a)), the result-
ing reduced collision integral nonetheless reproduces the full-
dimensional result within 10% for temperatures up to 2000 K
and with an error of just 20% at 3000 K. This is a significant
improvement relative to the reduced collision integral for the
calculated 12/6 Lennard–Jones potential. Clearly, the empiri-
cally determined tabulated Lennard–Jones parameters cannot
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be physically motivated based on the H + N2 intermolecular
potential. Instead, the empirical parameters should be inter-
preted as (fairly accurate) effective collision integral param-
eters within the restriction of the unphysical 12/6 Lennard–
Jones functional form.

Notably, no choice of σ and ε can be made that quan-
titatively reproduces the calculated full-dimensional reduced
collision integral over the entire temperature range considered
within the restriction of the 12/6 Lennard–Jones functional
form. In contrast, the exp/6 functional form—which has only
one additional parameter that may be readily calculated using
the modified spherical-averaging scheme presented above—
quantitatively predicts the calculated full-dimensional re-
duced collision integral over the entire temperature range
considered.

Finally, due to its importance in combustion modeling,
an improved theoretical value of D(T) for H + N2 was ob-
tained and a theoretical error analysis was performed, as de-
tailed in the Appendix. Briefly, the results of Eq. (4) were
corrected for small systematic errors associated with quantum
effects and with errors in the potential energy surface. An ana-
lytic three-parameter expression for D evaluated at 1 atm was
obtained,

D1atm(T ) = 1.111 (T/300 K)1.801 exp(36.49K/T ) cm2/s,

(8)

that reproduces the improved calculated values of D to bet-
ter than 0.4% from 300 to 3000 K. This expression was
assigned 2-sigma theoretical error bars of 0.7%, arising prin-
cipally from uncertainties in the fitted potential energy sur-
face. These errors may be similar in magnitude to higher-
order corrections to D,3 which have been neglected here. The
improved calculated values of D are lower than the results
of Stallcop et al.14 by 3% at 300 K and are higher by 5% at
3000 K. It may be more convenient to express Eq. (8) as a
set of effective exp/6 parameters. Diffusion coefficients cal-
culated for the empirical exp/6 parameters ε = 28.50 cm−1,
σ = 3.312 Å, and α = 11.45 reproduce Eq. (8) to better than
0.7% from 300 to 3000 K.

B. H2 + N2

Overall, trends in the results for H2 + N2 are similar to
those discussed above for H + N2, and we focus here on no-
table differences. Most importantly, the treatment of the re-
pulsive wall has a less significant effect on the computed re-
duced collision integral for H2 + N2 than for H + N2. As
shown in Fig. 2(a), the calculated repulsive wall for H2 + N2
is fairly well-described by the 9/6 Lennard–Jones poten-
tial, with an optimized repulsive Lennard–Jones exponent of
m = 8.5. The optimized exp/6 parameter for N2 + H2 is
α = 12.5, which somewhat more accurately describes the re-
pulsive wall at high energies than either the 9/6 or 8.5/6 poten-
tials. For this system, the calculated Lennard–Jones parame-
ters (ε = 45.0 cm−1 and σ = 3.32 Å) agree very well with
tabulated8 values (ε = 42.3 cm−1 and σ = 3.30 Å, where
the usual combining rules were used7), and in both cases

FIG. 2. (a) Isotropic intermolecular potential and (b) reduced (1,1) collision
integral for H2 + N2. The meanings of the symbols and lines are the same
as in Fig. 1. The semiclassical scattering results of Stallcop et al.15 are also
shown. All of the curves shown in (b) were reduced to the collision radius
σ̄ = 3.32 Å.

the 12/6 Lennard–Jones repulsive wall is harder and longer-
ranged than the calculated repulsive wall.

As shown in Fig. 2(b), the full-dimensional trajectory re-
sults are in excellent agreement with the semiclassical scat-
tering results of Stallcop et al.15 with differences of less then
3%. Again, these differences are most likely due to small dif-
ferences in the potential energy surfaces. The excellent agree-
ment between the present classical and earlier semiclassical
results may be largely explained by the criterion T ∗ > 1 de-
scribing the threshold below which quantum effects may be
seen in the collision integrals,12 where here T∗ = 5–46.

The reduced collision integral for the calculated exp/6
isotropic potential is in near quantitative agreement with the
full dimensional results (agreeing to better than 2%), which
again supports the conclusion that anisotropy and inelastic-
ity may be safely neglected for systems involving atomic and
diatomic species.

The reduced collision integral for the calculated 12/6
Lennard–Jones potential is in relatively poor agreement with
the results of Eq. (4), with errors up to 16% at high tem-
peratures. These errors are smaller than those for H + N2,
but we may nonetheless again conclude that the unphysical
12/6 Lennard–Jones repulsive wall is not suitable for quan-
titative predictions for this system. The relative errors in the
computed reduced collision integrals are again clearly related
to the accuracy of the descriptions of the repulsive walls
shown in Fig. 2(a). The reduced collision integral for the
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three-parameter exp/6 isotropic potential along with calcu-
lated values of σ , ε, and α quantitatively predicts the full-
dimensional result for this weakly interacting system.

The reduced collision integral for the tabulated 12/6
Lennard–Jones potential are in somewhat better agreement
with the full-dimensional results than those for the calculated
12/6 Lennard–Jones potential, particularly at low tempera-
tures, but errors as large as 13% remain at high temperature.

C. CnH2n+2 + N2

Next we consider the binary diffusion of CnH2n+2 in N2
for n = 1–4, which has been recently studied both experi-
mentally and computationally. McGivern and Manion23 mea-
sured binary diffusion coefficients for ethane, propane, and
butane in N2 at temperatures up to 723 K. Chae et al.32

used large-scale molecular dynamics simulations consisting
of 3300 molecules to evaluate diffusion coefficients from 500
to 1000 K for normal alkanes as large as C16H34 in N2.
The diffusion coefficients were obtained from the molecu-
lar dynamics simulations using the Green–Kubo formalism,33

which can in principle be used to model non-binary collisions.
Non-binary collision effects are likely negligible at the con-
ditions considered in their study and in the experiments of
McGivern and Manion23 and are explicitly neglected in the
present calculations. The present approach (Eq. (4)) is there-
fore closely related to one used in Ref. 32, as both calculations
rely on simulating large numbers of full-dimensional classical
binary collisions.

Relative to the large-scale Green–Kubo molecular dy-
namics simulations, Eq. (4) is more readily applied using
high-level potential energy surfaces. The present method re-
quires the computation of ensembles of independent short-
time (∼2 ps) classical trajectories for just two colliding
molecules. In contrast, the Green–Kubo calculations involve
the simultaneous simulation of thousands of molecules for
much longer timescales (14 ns in Ref. 32). The potential en-
ergy surface used by Chae et al.32 features empirical pair-
wise intermolecular atom–atom 12/6 Lennard–Jones interac-
tions, which were fitted to reproduce various experimental
properties that are sensitive to the intermolecular forces. The
CnH2n+2 + N2 potential energy surface used here has not been
empirically adjusted to fit any bulk properties and is instead
based on calculated ab initio intermolecular energies.28

Lennard–Jones parameters σ and ε for methane, ethane,
propane, and butane + N2 were previously calculated9 using
the spherical-averaging method and were shown to be in fairly
good agreement with the tabulated experimental Lennard–
Jones parameters of Tee et al.,34 where, again, the usual com-
bining rules were used. Here, these calculations were ex-
tended to include R̄(V ) for V > 0, and the calculated spher-
ically averaged repulsive walls are shown in Figs. 3(a)–6(a).
These are compared with 9/6 and 12/6 Lennard–Jones poten-
tials obtained for the calculated values of σ and ε. Unlike H +
N2 and H2 + N2, the calculated 12/6 Lennard–Jones potential
fairly accurately reproduces the calculated spherically aver-
aged repulsive interactions for all four of the normal alkanes
in N2. The 9/6 Lennard–Jones potential, in contrast, is too
short-ranged and too soft, with larger differences for the larger

FIG. 3. (a) Isotropic intermolecular potential and (b) reduced (1,1) collision
integral for CH4 + N2. The meanings of the symbols and lines are the same
as in Figs. 1 and 2. Also shown are the previous molecular dynamics results
of Chae et al.32 All of the results in (b) were reduced to the collision radius
σ̄ = 3.67 Å.

alkanes. Isotropic exp/6 potentials for each system were ob-
tained using the calculated values of σ and ε and optimizing
α = 14.2, 15.3, 16.2, and 16.5 to reproduce R̄(V ) for methane,
ethane, propane, and butane + N2, respectively. For all four
systems, the exp/6 potentials accurately reproduce the calcu-
lated repulsive wall energies up to at least 2500 cm−1.

Reduced collision integrals for methane, ethane, propane,
and butane + N2 are shown in Figs. 3(b)–6(b). The full-
dimensional calculated reduced collision integrals are in
quantitative agreement with the experimental results of
McGivern and Manion23 for all three systems and for the en-
tire temperature range studied experimentally. The differences
are smaller than the present 2-sigma statistical uncertainties
(1%) for ethane + N2 and butane + N2 and are just ∼2%
for propane + N2. This excellent agreement again supports
the present use of classical mechanics, as there is no appar-
ent evidence of missing quantum effects in these comparisons
at any temperature despite the room temperature values of T∗

approaching 1 for these systems. We emphasize that no em-
pirical adjustments have been made to the potential energy
surfaces used here, and that the present calculations come en-
tirely from first principles.

The previous calculated results of Chae et al.32 are also in
quantitative agreement with the experimental results for bu-
tane + N2 with larger (but still relatively small) differences
for the smaller alkanes. The results of Eq. (4) and those of
Chae et al.32 differ by up to 9% for methane + N2. These
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FIG. 4. (a) Isotropic intermolecular potential and (b) reduced (1,1) collision
integrals for C2H6 + N2. The meanings of the symbols and lines are the
same as in the previous figures. Also shown are the experimental collision
integrals of McGivern and Manion.23 All of the results in (b) were reduced
to the collision radius σ̄ = 4.02 Å.

differences most likely arise from differences in the potential
energy surfaces used in the two studies, although differences
may arise from the dynamical treatments as well.

Next, we quantify the effects of inelasticity, anisotropy,
and the treatment of the repulsive wall on the computed re-
duced collision integrals for these polyatomic systems. These
effects have not been well studied for systems larger than
a few atoms. Even for the largest system considered here,
butane + N2, the effect of inelasticity is small, with the re-
sults of Eqs. (4) and (5) differing from one another by no more
than 2% (and typically by less than 0.5%). By comparing the
full-dimensional results with those obtained for the calculated
isotropic exp/6 potential, we may therefore interpret any dif-
ferences as arising entirely from the treatment of anisotropy
in the intermolecular potential.

We note that our calculated exp/6 potential, although rea-
sonable and well-defined, is not unique and that other reason-
able isotropic potentials may be defined. Because any discus-
sion of the effect of anisotropy requires a reference isotropic
potential, the quantification of this effect is therefore neces-
sarily somewhat arbitrary. For example, one could obtain a
different reference isotropic potential by spherically averaging
over the full-dimensional interaction potential at fixed center-
of-mass distances. We showed previously9 that this strategy
leads to unphysical Lennard–Jones parameters and less accu-
rate collision rates relative to the “orientation-averaging with
one-dimensional optimizations” strategy used here. Compar-

FIG. 5. (a) Isotropic intermolecular potential and (b) reduced (1,1) collision
integrals for C3H8 + N2. The meanings of the symbols and lines are the same
as in Figs. 1–4. All of the results in (b) were reduced to the collision radius
σ̄ = 4.27 Å.

ing full-dimensional collision integrals with those based on
the spherically averaged isotropic potential may show signifi-
cant differences, but it is not clear if this should be interpreted
as demonstrating the presence of significant anisotropic ef-
fects or else that the reference isotropic potential is unphysi-
cal. Our present choice of using the calculated isotropic exp/6
reference potential is further supported by the excellent agree-
ment demonstrated above between its reduced collision in-
tegrals and those of the present full-dimensional classical
and previous full-dimensional semiclassical results of Stall-
cop et al.14, 15 for H + N2 and H2 + N2, systems where
the effect of anisotropy was previously reported to be small.
Importantly, the present approach of comparing the full-
dimensional results of Eq. (4) with those of the calculated
exp/6 and 12/6 potentials allows us to separately quantify the
effects of anisotropy and those related to the treatment of the
repulsive wall.

Unlike for the 3- and 4-atom systems considered above,
the effect of anisotropy for CnH2n+2 + N2 is not negligible,
with the largest effect at low temperatures. At room tempera-
ture, for example, the neglect of anisotropy increases the re-
duced collision integral by 7%–15% for n = 1–4. Notably, a
detailed treatment of anisotropy is required to obtain quanti-
tative agreement with the available results from 300 to 700 K
discussed above. The effect of anisotropy is smaller at higher
temperatures, varying from 3% to 7% at 1000 K to just 2% at
1500 K and above.
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FIG. 6. (a) Isotropic intermolecular potential and (b) reduced (1,1) collision
integrals for C4H10 + N2. The meanings of the symbols and lines are the
same as in Figs. 1–5. All of the results in (b) were reduced to the collision
radius σ̄ = 4.51 Å.

Next, we consider the treatment of the repulsive wall. The
reduced collision integrals for the calculated 12/6 Lennnard–
Jones potential are in close agreement with those based on
the exp/6 potential, as suggested by the potential curves in
Figs. 3(a)–6(a). Results for the calculated 9/6 Lennnard–Jones
potential are lower and in better agreement with the full-
dimensional theoretical and experimental results. The present
comparisons show that the improved accuracy of the 9/6 po-
tential depends on a fortuitous cancellation of the errors aris-
ing from both the neglect of anisotropy and the inaccurate
description of the repulsive wall. While this is perhaps a use-
ful practical result for improving the treatment of transport
properties in existing kinetics codes, it is not clear if this can-
cellation can be relied upon in general.

We emphasize that, while not quantitative, the 12/6
Lennard–Jones collision integrals for CnH2n+2 + N2 obtained
using calculated values of σ and ε are in reasonably good
agreement with available experimental results and with the
present full-dimensional classical results, particularly at high
temperatures. This observation may justify the widespread ap-
proach of using 12/6 collision integrals in detailed combus-
tion applications. An accuracy of ∼5% in the transport prop-
erties is likely suitable for many combustion applications, and
this threshold is achieved for the calculated isotropic 12/6
Lennard–Jones potential above ∼700 K for the CnH2n+2
+ N2 systems—i.e., detailed treatments of anisotropy and
of the repulsive wall are not required. Tabulations of σ and

ε, such as our previous tabulation of calculated Lennard–
Jones parameters,9 may therefore be reliably used along with
isotropic 12/6 Lennard–Jones collision integrals for most sys-
tems at conditions relevant to combustion. Of course, as dis-
cussed above, important exceptions are weakly interacting
systems, such as the H + N2 system, which are more ac-
curately described using exp/6 collision integrals. Dagdigian
and Alexander computed quantum mechanical collision inte-
grals for OH + He17 and CH2 + He18 and found that these
systems, also involving open-shell species, were poorly de-
scribed by 12/6 Lennard–Jones potentials.

Interestingly, the full-dimensional classical results of
Eq. (4) and those of Chae et al.32 show different trends with
respect to the effect of anisotropy and system size for the nor-
mal alkanes in N2. As shown in Fig. 5 from Ref. 32, the full-
dimensional classical calculations of Chae et al.32 indicate
that the neglect of anisotropy decreases the collision integral
(and therefore increases the diffusion coefficient). They show
that such an effect can be quite significant for large species,
such as C16H34. This can be seen in the present comparisons
of their results as well, where the Chae et al.32 reduced col-
lision integrals are larger (and sometimes less accurate) than
the reduced collision integrals for the tabulated 12/6 Lennard–
Jones potentials for all four systems. Comparing their molec-
ular dynamics results with the present results for the cal-
culated exp/6 or 12/6 isotropic potentials, however, would
instead lead to the interpretation that the neglect of anisotropy
decreases the collision integral for methane, has a small effect
for ethane, but increases the collision integral for propane and
butane. Neither of these trends agrees with the trend iden-
tified in the present full-dimensional calculations, where we
find that the neglect of anisotropy consistently increases the
calculated collision integrals, with more significant effects at
lower temperatures and for larger systems.

Finally, we consider the accuracy of using 12/6 Lennard–
Jones collision integrals along with tabulated (empirical) pa-
rameters σ and ε. As observed above for H + N2 and
H2 + N2, the reduced collision integrals for the empiri-
cal 12/6 Lennard–Jones potentials for CnH2n+2 + N2 are
systematically lower and in closer agreement with exper-
iment than those for the calculated 12/6 Lennard–Jones
potentials. Neither of the 12/6 Lennard–Jones collision inte-
grals accurately reproduces the shape of the experimental or
full-dimensional calculated collision integrals over the entire
temperature range considered. As discussed above, this defi-
ciency arises from the neglect of anisotropy and is therefore
unavoidable within the constraint of using isotropic collision
integrals. The detailed temperature-dependence of the full-
dimensional calculated collision integrals cannot be quanti-
tatively reproduced using the 12/6 Lennard–Jones potential
for any choice of parameters σ and ε. Because of this lim-
itation, empirically optimized parameters σ and ε will dif-
fer from calculated ones in such a way as to compensate for
the neglect of anisotropy in the collision integrals. Again,
existing tabulations of empirical parameters σ and ε should
be interpreted as effective parameters within the constraint
of the isotropic 12/6 Lennard–Jones potential; these param-
eters will not necessarily have any clear relationship with the
calculated intermolecular potential. Furthermore, empirically

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

198.206.219.38 On: Tue, 30 Sep 2014 19:18:20



124313-10 Jasper et al. J. Chem. Phys. 141, 124313 (2014)

optimized values of σ and ε will generally depend on the
temperature range over which they were optimized, such that
experimental determinations of 12/6 Lennard–Jones parame-
ters at room temperature may not be suitable for combustion
applications.

IV. SUMMARY AND CONCLUSIONS

Full-dimensional classical collision integrals �(1,1) rele-
vant to the binary diffusion coefficient D were calculated for
six systems colliding with N2 using Monte Carlo sampling
and ensembles of classical trajectories (Eq. (4)). These calcu-
lations made no simplifying assumptions about the potential
energy surface, and here we used analytic full-dimensional
potential energy surfaces fitted to reproduce ab initio inter-
action energies. The present method for calculating �(1,1) (or
equivalently D) therefore comes from first-principles, requir-
ing no empirical or experimental information.

To more clearly show differences in the various calcu-
lated and measured values, �(1,1) was presented in detail in
Sec. III instead of D. The relative errors and differences in
�(1,1) are the same as those in D, and in this summary we
focus on the accuracy of the calculated values of D. The first-
principles calculated values of D were in excellent agreement
with available experimental23 values for ethane, propane, and
butane in N2, with relative differences of less than 2%. These
differences are similar to the combined reported experimental
and present statistical uncertainties. Excellent agreement was
also found between the present calculated values of D and
the previous semiclassical values of Stallcop et al.14, 15 for H
+ N2 and H2 + N2. Although both adjustments were small,
the present calculation of D for H + N2 was improved by ap-
proximately adjusting for quantum effects and for high-level
quantum chemistry corrections to the potential energy sur-
face. An analytic expression for D based on the improved cal-
culated results for H + N2 was reported (Eq. (8)) that differs
by a few percent from that of Stallcop et al.14

Together, these results support the 50-year-old
suggestion12 that classical collision integrals may be ex-
pected to be very accurate for molecular systems at room
temperature and above. Specifically, the criterion for accu-
rate classical collision integrals suggested in Ref. 12 was
T ∗ > 1. We note that the largest value of ε considered here
was 137 cm−1 for butane + N2, for which T ∗ = 1.5 at 300 K,
close to, but still larger than, the T ∗ = 1 threshold identified
in Ref. 12. Larger species, species with permanent dipoles,
etc., will feature stronger interactions, larger values of ε, and
smaller values of T ∗. Detailed quantal/classical comparisons
may reveal room temperature quantum effects for these more
strongly interacting systems, although these effects may be
mitigated by the mass-dependence of the quantum correction,
as discussed in Ref. 12.

The full-dimensional classical results were used to quan-
tify the accuracy of simplifying assumptions often made when
calculating collision integrals and diffusion coefficients, with
the goal of identifying practical first-principles approaches for
combustion applications. The effect of collisional inelasticity
on the computed values of D was studied by comparing the
results of Eqs. (4) and (5). As anticipated generally,20 the ef-

fect of explicitly including inelasticity was found to be small
for all of the systems considered here.

To quantify the effect of neglecting anisotropy when cal-
culating D, the full-dimensional results of Eq. (4) were com-
pared with those for calculated isotropic exp/6 (Bucking-
ham) potentials. The three exp/6 parameters were determined
for each system by calculating the Lennard–Jones parame-
ters σ and ε from the full-dimensional potential as described
previously9 and the exponential range parameter α by spheri-
cally averaging over the full-dimensional repulsive wall. The
calculated exp/6 potentials were shown to reproduce the range
and softness of the spherically averaged repulsive walls for
all the systems considered here more accurately than the 9/6,
12/6, or optimized m/6 Lennard–Jones potentials.

The neglect of anisotropy in the intermolecular poten-
tial was shown to introduce non-negligible errors in the cal-
culated diffusion coefficients for polyatomic systems at low
temperatures. At room temperature, for example, the neglect
of anisotropy decreased the predicted diffusion coefficient
by 15% for butane + N2. Notably, detailed treatments of
anisotropy were needed to achieve quantitative agreement
with McGivern and Manion’s23 measured diffusion coeffi-
cients at 300–700 K. At higher temperatures, the error associ-
ated with the neglect of anisotropy was found to be small.
The previously reported result13–17, 19 that anisotropy could
be safely neglected at all temperatures for systems involving
atomic and diatomic species was confirmed here in the clas-
sical results for H + N2 and H2 + N2. This result, however,
evidently does not hold for polyatomic systems at low temper-
atures. This conclusion agrees with that of Ma et al.,35 who re-
cently quantified the effect of anisotropy in quantal collisional
energy transfer calculations for CH3 + He.

By comparing collision integrals for the calculated
isotropic 12/6 Lennard–Jones and exp/6 potentials, the error
associated with the treatment of the repulsive wall was quan-
tified. An accurate description of the repulsive wall was nec-
essary to quantitatively predict D for the weakly interacting
systems H + N2 and H2 + N2. Specifically, the use of the
12/6 Lennard–Jones potential resulted in the under-prediction
of diffusion coefficients by 15%–40% from 300 to 3000 K for
H + N2. The use of a calculated exp/6 potential is nearly as
simple as the more frequently employed 12/6 Lennard–Jones
potential and is significantly more accurate for weakly inter-
acting systems.

Diffusion coefficients based on empirically determined
12/6 Lennard–Jones parameters were considered. The empir-
ical values of σ and ε generally bear no straightforward re-
lationship with the intermolecular potential and with the cal-
culated values of σ and ε. The empirical parameters should
instead be interpreted as effective parameters that compen-
sate for errors arising from the neglect of anisotropy and/or
from the inaccurate treatment of the repulsive wall within the
restriction of the 12/6 Lennard–Jones functional form.

Despite the errors enumerated above, we emphasize that
even the simplest first-principles calculations considered here
are likely sufficiently accurate for determining the major-
ity of the large number of transport parameters required for
detailed chemical kinetic combustion simulations. Specifi-
cally, diffusion coefficients obtained using calculated 12/6
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Lennard–Jones potentials were shown to agree with those ob-
tained from Eq. (4) within ∼5% for the normal alkanes in
N2 at temperatures above ∼700 K. This is likely representa-
tive of the general accuracy of this approach for most systems
and conditions relevant to combustion. (Errors were larger at
300 K, suggesting that more detailed theoretical methods for
calculating transport properties may be required when build-
ing models for lower-temperature applications such as atmo-
spheric chemistry.) A very important exception for combus-
tion applications is the diffusion of H in N2, which, as noted
above, is not well described by the 12/6 Lennard–Jones po-
tential and requires the use of a potential with a more realis-
tic repulsive wall such as the exp/6 potential. This is likely a
general result for weakly interacting systems, and we showed
that the three exp/6 parameters may be straightforwardly cal-
culated from the full-dimensional potential via a spherical-
averaging approach. An analytic expression for the calculated
value of D for H + N2 was presented and assigned 2-sigma
error bars of only 0.7%.

In summary, the classical isotropic 12/6 Lennard–Jones
model may be reliably used to build practical databases of
transport properties for combustion (T > 700 K) for most
species, while the classical isotropic exp/6 model should be
used for weakly interacting systems. Tabulated collision inte-
grals are available for both models, and the required two (σ
and ε) or three parameters (σ , ε, and α) may be calculated di-
rectly from the full-dimensional interaction potential. When
more accurate results are required, trajectory-based Monte
Carlo sampling along with ab initio fitted potential energy
surfaces may be used to calculate classical transport proper-
ties with very high accuracy.
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APPENDIX: THEORETICAL ERROR ANALYSIS
AND AN IMPROVED CALCULATED VALUE
OF D FOR H + N2

Here we present a detailed theoretical error analysis for
the calculated value of D for H + N2. This analysis is used
both to improve the calculated value of D and to provide first-
principles error bars. One may identify three sources of error
in the calculations for H + N2 described in Sec. III A: (1) the
use of classical mechanics, (2) Monte Carlo statistical uncer-
tainties in Eq. (4) or, equivalently, numerical uncertainties as-
sociated with the quadratures used to evaluate the previously

tabulated collision integrals for the isotropic potentials, and
(3) errors in the potential energy surface.

We estimated the quantum correction to D for H + N2
based on the detailed comparison of quantal and classical re-
sults for the 12/6 Lennard–Jones potential given in Ref. 12.
Using Fig. 5 of Ref. 12 and the present calculated values of
σ and ε, the quantum correction was estimated to increase D
by 0.8% at 300 K, 0.3% at 700 K, and <0.1% above 1250 K.
These relative corrections based on the 12/6 Lennard–Jones
potential were assumed to also apply to the results of Eq. (4).

As mentioned above, 2-sigma statistical error bars for
Eq. (4) were estimated via the bootstrap method and are 0.4%.
This error is likely larger than other numerical errors asso-
ciated with the trajectory calculations. Quadrature errors for
the tabulated exp/6 collision integrals from Ref. 21 were re-
ported to be 0.2%. There, integer values of α were considered,
and here we have assigned a somewhat larger numerical un-
certainty (0.4%) to the present exp/6 collision integrals, prin-
cipally arising from our interpolation to non-integer values
of α.

The error associated with the potential energy surface is
the largest source of error in D, arising both from fitting er-
rors in the analytic surface and errors in the quantum chem-
istry method on which the fitted surface is based. While the
fitting error may be larger along some cuts through the in-
termolecular potential, Fig. 1(a) shows that the spherically
averaged intermolecular potentials for the directly calculated
QCISD(T)/CBS potential and for the fitted surface are in good
agreement with one another, although there are small differ-
ences high up the repulsive wall. One may therefore obtain
exp/6 parameters for the directly calculated QCISD(T)/CBS
energies (α = 11.45, σ = 3.35 Å, and ε = 27.0 cm−1) that
differ slightly from those for the fitted surface (α = 11.6,
σ = 3.36 Å, and ε = 26.1 cm−1). Diffusion coefficients calcu-
lated for these two exp/6 potentials differed by less than 0.4%
up to 1500 K and by 0.8% at 3000 K, with the direct result
systematically higher than that of the fitted potential.

The error associated with the choice of quantum chem-
istry method is considered next. Energies obtained using
the counterpoise corrected QCISD(T)/CBS method that was
used to fit the present analytic surface were compared with
the results of a high-level (HL) method defined as follows:
CCSD(T) coupled cluster energies were extrapolated to the
CBS limit using a two-point formula and the aug-cc-pV5Z
and aug-cc-pV6Z basis sets. The CBS extrapolation was car-
ried out with and without counterpoise corrections, and the
two CBS energies were averaged. A high-level correction
was added that included core-valence, relativistic, geome-
try relaxation, and higher-order excitation (including up to
full quadruples and perturbative pentuples excitations, TQ(P))
corrections. The core-valence correction was obtained from
CBS extrapolation of calculations for Dunning’s core-valence
cc-pCVTZ and cc-pCVQZ basis sets, the relativistic correc-
tion employed a cc-pVTZ basis set, the geometry relaxation
employed the cc-pVQZ basis set, and T(Q) and Q(P) cor-
rections employed the cc-pVTZ and cc-pVDZ basis sets, re-
spectively. The QCISD(T)/CBS and HL energies were cal-
culated along two cuts (T-shaped and linear) through the
interaction potential, with very similar relative differences
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between the two methods along each cut. The interaction
energies for the two methods differed by less than 1.5 cm−1

near the van der Waals minimum (corresponding to 4% errors
in ε), by less than 3 cm−1 near the inner turning point (cor-
responding to 0.5% errors in σ ), and by 5–15 cm−1 around
1000 cm−1 up the repulsive wall (corresponding to 0.5% er-
rors in α). Collision integrals were evaluated for exp/6 fits to
the QCISD(T)/CBS and HL curves along both of the cuts. The
computed (1,1) collision integrals for the two quantum chem-
istry methods differed from one another by less than 0.3%.

Error bars for the calculated HL intermolecular potential
method were estimated and represent any small but remain-
ing incomplete basis set and correlation effects. The error
bars were assumed to be comprised of independent contribu-
tions from the full high-level correction and from one-half of
the difference in the CBS extrapolations with and without the
counterpoise correction. The resulting error bars are approx-
imately half as large as the QCISD(T)/CBS and HL differ-
ences identified above. The effect of these small errors in the
HL potential on the computed collision integrals was there-
fore estimated to be smaller than those associated with nu-
merical errors. Considering errors arising from both the fitted
potential and from the choice of quantum chemistry method,
we estimated 2-sigma error bars associated with the potential
energy surface to be 0.6%.

The preceding error analysis was used to both im-
prove the present calculated value of D and to provide first-
principles error bars. Two important systematic errors were
identified above: the quantum correction, which increased D
by up to 0.8% at low T, and the fitting error in the analytic
potential at high repulsive energies, which increased D by up
to 0.8% at high T. The two corrections were considered ad-
ditive, and an improved value of D was obtained by scaling
the results of Eq. (4) accordingly. The improved values of
D were increased relative to the results of Eq. (4) by 1% at
300 K, by 0.4% at 1000 K, and by 0.8% at 3000 K. A three-
parameter analytic expression fit to the improved theoretical
results is given by Eq. (8) and reproduces the calculated val-
ues to within 0.4%. This expression may be assigned 2-sigma
first-principles error bars of 0.7% based on those arising from
statistical uncertainty (0.4%) and from errors in the fitted po-
tential (0.6%), as detailed above. For comparison with other
workers, we note that the best two parameter fit to the im-
proved calculated values of D at 1 atm is 1.236 (T/300 K)1.752

cm2/s, although this expression reproduces the calculated val-
ues with errors as large as 2%, which is larger than the present
estimated 2-sigma error bars.
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